0 : Odsłon:
Kondensatory – Jak to działa? Zasady działania i zastosowanie
5 lipca, 2021
Anna Wieczorek
elektronika, kondensator, rodzaje kondensatorów, zasada działania, zastosowanie
Spis treści:
1 Jak działa kondensator?
2 Zastosowanie kondensatorów w elektryce i nie tylko
3 Co to jest kondensator? Do czego służy kondensator?
4 Polaryzacja kondensatorów elektrolitycznych, czyli jak podłączyć, by uniknąć wybuchu
5 Ładowanie i rozładowanie kondensatora – jak podłączyć kondensator?
6 Łączenie kondensatorów
7 Kondensator – do czego służy? Filtracja zasilania
8 Jak dobrać kondensator do układu zasilania?
9 Kondensator – Do czego służy? – Element filtru sygnałowego
10 Obwody LC – cewki i kondensatory
11 Kondensatory – podsumowanie
Czas czytania: 9 min.
Jak działa kondensator?
Przez kilkadziesiąt lat rozwoju elektroniki na rynku pojawiły się tysiące grup i odmian elementów elektronicznych. Niektóre z nich są wręcz egzotyczne, stosowane jedynie w ściśle określonych, wąskich grupach zastosowań i dostępne jedynie dla określonych przedsiębiorstw. Inne natomiast stanowią bazę, bez której nie można wyobrazić sobie żadnego, nawet najprostszego układu elektronicznego. Do tej drugiej grupy należą niewątpliwie kondensatory, czyli trzecia – obok rezystorów i cewek – podgrupa elementów biernych zwanych także pasywnymi.
Zastosowanie kondensatorów w elektryce i nie tylko
Te elementy są wszechstronne. Zastosowanie kondensatorów jest tak szerokie, że nie sposób wymienić wszystkich możliwych scenariuszy użycia. Taka lista nie miałaby też większego sensu – dlatego zamiast listy zastosowań, w tym artykule przedstawimy najczęściej spotykane w praktyce układy pracy kondensatorów. Nic bowiem lepiej nie obrazuje właściwości danego elementu jak przykłady realnych aplikacji. Chcesz wiedzieć, jakie występują rodzaje kondensatorów? Jeśli tak, to czytaj dalej!
Co to jest kondensator? Do czego służy kondensator?
Czym jest kondensator? Definicja głosi, że to element elektryczny lub elektroniczny, który został stworzony z pary przewodników, zwanych okładkami, które zostały rozdzielone dielektrykiem.
Budowa i zasada działania kondensatora są banalnie proste – dwie płaszczyzny przewodnika (najczęściej metalu), zwane fachowo okładkami, oddzielone są od siebie cienką warstwą dielektryka (izolatora). Po przyłożeniu do nich napięcia stałego, ładunki o przeciwnych znakach gromadzą się na odpowiednich okładkach – jest to efekt wytworzonego pomiędzy nimi jednorodnego pola elektrycznego. Po odłączeniu kondensatora od źródła napięcia, ładunki zgromadzone na okładkach pozostają – mówimy, że kondensator został naładowany.
Miarą ilości ładunków, które może zgromadzić dany kondensator, jest jego pojemność. Wyrażamy ją w faradach (F), choć zdecydowana większość kondensatorów ma pojemności znacznie mniejsze, rzędu bilionowych (pF – pikofarad), miliardowych (nF – nanofarad) czy milionowych (uF – mikrofarad) części jednostki podstawowej. Jeżeli wyobrazimy sobie kondensator jako dwie płaskie, równoległe metalowe płytki o powierzchniach S, ustawione w odległości d, to pojemność C kondensatora będziemy mogli wyliczyć ze wzoru:
C = ε0 εr S / d
przy czym stała ε0 oznacza tzw. przenikalność dielektryczną próżni (równą w przybliżeniu 8,85 * 10-12 F/m), zaś εr to względna przenikalność dielektryczna zastosowanego dielektryka. Jak widać, na pojemność kondensatora możemy wpłynąć modyfikując trzy parametry: powierzchnię okładek, odległość pomiędzy nimi oraz przenikalność izolatora. Jeżeli chcemy uzyskać kondensator o dużej pojemności, powinniśmy zastosować duże okładki, zmniejszyć odległość pomiędzy nimi oraz zastosować możliwie „dobry” dielektryk. Nie ma jednak nic za darmo: zwiększając powierzchnię okładek, nieuchronnie zwiększamy gabaryty kondensatora, zaś zmniejszając odległość pomiędzy okładkami, obniżamy maksymalne napięcie, z jakim może pracować kondensator. Przy bardzo cienkiej warstwie dielektryka, już niewielkie napięcie wystarczy, aby przebić cienki izolator, powodując zwarcie, czyli – najprościej mówiąc – nieodwracalne uszkodzenie kondensatora.
Budowa kondensatora
Kondensator – budowa: Jak zatem poradzili sobie z tymi problemami konstruktorzy kondensatorów? W przypadku tzw. kondensatorów foliowych, okładki mają postać długich pasków cienkiej, metalowej folii, przedzielonych równie długim i cienkim paskiem folii z odpowiedniego tworzywa sztucznego. Złożone komponenty są następnie ciasno zwijane, tworząc – po uprzednim podłączeniu wyprowadzeń (drucików) i zalaniu całości specjalną żywicą – finalny produkt, czyli wysokiej jakości kondensator.
Nieco inną budowę mają kondensatory elektrolityczne – ich pojemności są wielokrotnie wyższe, ponieważ rolę dielektryka pełni wytworzona chemicznie, cienka warstwa tlenku na powierzchni jednej z okładek. Rolę drugiej okładki pełni elektrolit pokrywający tlenek i stanowiący interfejs pomiędzy dielektrykiem, a drugim paskiem aluminiowej folii.
Dzięki niezwykle małej grubości tlenku oraz dużej powierzchni okładek (uzyskanej poprzez chemiczne trawienie metalowej folii), pojemności kondensatorów elektrolitycznych są bardzo wysokie – generalną zasadą jest przy tym, że jeżeli dwa kondensatory o zbliżonej kubaturze różnią się pojemnością, to najczęściej kondensator o dużej pojemności będzie miał niższe dopuszczalne napięcie pracy. Zasada „krótkiej kołdry”, czyli technologicznego kompromisu, daje tutaj o sobie znać wyjątkowo czytelnie.
Kondensator – symbol: pamiętajmy, że symbol kondensatora w schematach elektrycznych to najczęściej dwie pionowe, równoległe kreski.
Symbol kondensatora
Pamiętajmy, że symbol kondensatora w schematach elektrycznych to najczęściej dwie pionowe, równoległe kreski. W zależności od rodzaju mogą one wyglądać następująco:
kondensator stały niespolaryzowany
kondensator spolaryzowany (elektrolityczny)
kondensator zmienny/nastawny/trymer
Kondensator dostrojczy/trymer
Rodzaje kondensatorów
Kondensator – rodzaje: wspomniane wcześniej kondensatory foliowe charakteryzują się dobrą stabilnością parametrów (przede wszystkim pojemności), potrafią też pracować przy wysokich napięciach (rzędu kilkuset woltów). Z tego względu są chętnie stosowane przede wszystkim w sieciowych obwodach zasilania. Pojemności kondensatorów foliowych utrzymują się na poziomie od około 1 nF do maksymalnie kilkudziesięciu mikrofaradów.
Kondensatory elektrolityczne oferują bardzo wysokie pojemności (od pojedynczych mikrofaradów do kilkudziesięciu faradów – w tym ostatnim przypadku mówimy o tzw. superkondensatorach). Zazwyczaj jednak jest to okupione albo sporymi wymiarami, albo niskim napięciem maksymalnym. Te rodzaje kondensatorów mają dość małą dokładność pojemności (często rzędu +/- 20 %) i wykazują dość spore wahania tego parametru w funkcji temperatury otoczenia, napięcia pracy oraz… czasu, czyli – prościej mówiąc – mają tendencje do starzenia się. Rozróżniamy dwie główne grupy kondensatorów elektrolitycznych: aluminiowe (tańsze, ale o nieco gorszych parametrach) i tantalowe (drogie, ale wysokiej klasy). Warto dodać, że czołowi producenci kondensatorów stale pracują nad nowymi rodzajami kondensatorów, zbliżonych budową do obecnie stosowanych elementów, jednak oferujących jeszcze lepsze parametry elektryczne. Kondensatory elektrolityczne występują zarówno w formie elementów do montażu przewlekanego (THT), jak i powierzchniowego (SMD). Schematyczne oznaczenie kondensatora elektrolitycznego różni się od oznaczenia innych typów kondensatorów z uwagi na tzw. polaryzację – dokładniej opisaliśmy ją w dalszej części artykułu.
Kondensatory elektrolityczne 4700uF/25V 16x25mm 105C THT.
Trzecią – oprócz wyżej wymienionych – grupą najczęściej stosowanych kondensatorów są kondensatory ceramiczne. Ich budowa jest nieco zbliżona do kondensatorów foliowych, choć – z uwagi na kruchość ceramiki – okładziny nie są oczywiście zwijane w postaci spirali, ale układane niejako „równolegle” w postaci wielowarstwowej „kanapki”. Kondensatory te charakteryzują się najniższymi spośród wymienionych odmian elementów pojemnościami (od pojedynczych pikofaradów do kilkunastu mikrofaradów), mają jednak inne, bardzo korzystne z praktycznego punktu widzenia cechy: oferują dobrą (lub nawet doskonałą) stabilność temperaturową, małą tolerancję pojemnościową (czyli dokładnie „trzymają” nominalną pojemność, określoną przez producenta) oraz małe straty. Także w tym przypadku kondensatory mogą występować zarówno w obudowach do montażu przewlekanego, jak i powierzchniowego. Ponieważ – tak, jak w przypadku kondensatorów foliowych – także kondensatory ceramiczne nie mają oznaczonej określonej polaryzacji, więc ich symbol nie różni się od tego, używanego w odniesieniu do kondensatorów foliowych.
Kondensatory ceramiczne
Polaryzacja kondensatorów elektrolitycznych, czyli jak podłączyć, by uniknąć wybuchu
Tak, to prawda – kondensator elektrolityczny (szczególnie o większych wymiarach) potrafi eksplodować, jeżeli zostanie niewłaściwie zastosowany. Istnieją dwa główne scenariusze układowe, których elektrolity „nie znoszą”. Pierwszy z nich, jak zresztą dla każdego kondensatora (i nie tylko) wiąże się z przekroczeniem maksymalnego napięcia pracy. Kondensatory elektrolityczne są na to szczególnie „wyczulone”, z uwagi na wspomnianą wcześniej bardzo niewielką grubość dielektryka. O ile jednak kondensator potraktowany zbyt wysokim napięciem przeważnie ulegnie wewnętrznemu zwarciu (co może de facto doprowadzić do poważnych zniszczeń w całym układzie), to jeszcze bardziej niewskazane jest podłączanie kondensatorów elektrolitycznych do napięć o polaryzacji przeciwnej, niż wynika to z oznaczenia końcówek, umieszczanych na obudowach tych elementów.
Ta „wrażliwość” kondensatorów elektrolitycznych wynika z zachowania płynnego elektrolitu – odwrotne napięcie powoduje gwałtowne wytwarzanie gazów, które po przekroczeniu granicy wytrzymałości obudowy kondensatora mogą doprowadzić do jego wybuchu. Z tego powodu nie należy stosować kondensatorów elektrolitycznych w tych miejscach układu, w których polaryzacja napięcia może osiągać różne znaki (przede wszystkim dotyczy to napięć przemiennych). Na marginesie dodajmy, że można spotkać specjalne kondensatory elektrolityczne dostosowane do użycia w układach o zmiennej polaryzacji (a także techniki poprawnego stosowania w nich klasycznych „elektrolitów”) – najczęściej jednak można poradzić sobie z konstrukcją układu bez konieczności stosowania takich wynalazków.
Ładowanie i rozładowanie kondensatora – jak podłączyć kondensator?
Teoretycznie kondensator powinien utrzymywać stan naładowania dowolnie długo, o ile nie zostanie podłączony do obciążenia, które spowodowałoby przepływ prądu i w efekcie rozładowanie kondensatora (spadek napięcia pomiędzy okładkami kondensatora do zera). Jak to zwykle w praktyce bywa, żadna sytuacja nie jest idealna.
Kondensator, nawet jeżeli zostanie całkowicie odłączony od reszty układu, i tak po pewnym czasie ulegnie tzw. samorozładowaniu – wynika to z nieidealnych właściwości dielektryka, przez który zawsze może przepłynąć pewien (znikomy, ale jednak) prąd. Stopień tego zjawiska zależy od rodzaju dielektryka oraz budowy kondensatora.
Jeżeli natomiast kondensator zostanie podłączony do obciążenia (np. rezystora), napięcie na nim spadnie, a czas spadku będzie zależny od wartości prądu rozładowania. Im większa jest (zastępcza) rezystancja obciążenia lub pojemność kondensatora, tym dłuższy jest czas rozładowywania do określonej wartości. Ponieważ taki właśnie układ pracy (ładowanie i rozładowanie przez szeregowy rezystor) jest spotykany bardzo często w praktycznych układach, warto zapamiętać pomocny wzór:
τ = RC
gdzie τ oznacza tzw. stałą czasową, określającą czas, w którym napięcie spadnie (podczas rozładowania) lub wzrośnie (podczas ładowania) o ok. 63,2 % wartości maksymalnej. Przykładowo, jeżeli kondensator o pojemności 100 uF jest ładowany przez rezystor o wartości 20 kΩ napięciem 10 V, to po czasie równym stałej czasowej τ:
τ = 100 * 10^-6 * 20 * 10^3 = 2 s
napięcie na kondensatorze osiągnie wartość 63,2 % napięcia zasilania, czyli 6,32 V.
Warto zwrócić uwagę, że (roz)ładowanie kondensatora przez rezystor następuje silnie nieliniowo. Dokładniej rzecz biorąc, przebiegi napięcia (a także prądów) mają kształt krzywej wykładniczej. W niektórych układach jest jednak możliwe uzyskanie liniowego (jednostajnego) wzrostu lub spadku napięcia na kondensatorze – jest to możliwe przy zastosowaniu źródła prądowego bezpośrednio z kondensatorem. Tak pracują niektóre generatory oraz układy kształtowania impulsów.
Łączenie kondensatorów
Podobnie jak w przypadku rezystorów, także kondensatory mogą być łączone zarówno szeregowo, jak i równolegle. W przypadku połączenia równoległego, wypadkowa (zastępcza) pojemność obwodu jest sumą poszczególnych pojemności, czyli:
Cw = C1 + C2 + … Cn
Z kolei pojemność połączenia szeregowego może być wyliczona za pomocą wzoru:
Cw = 1 / (1/C1 + 1/C2 + … 1/Cn)
Warto zwrócić uwagę, że forma ww. wzorów jest dokładnie odwrotna, niż w przypadku łączenia rezystorów (gdzie to właśnie szeregowe łączenie daje w efekcie sumę poszczególnych rezystancji).
Kondensator – do czego służy? Filtracja zasilania
Jednym z podstawowych, najprostszych i jednocześnie najczęściej stosowanych układów pracy kondensatorów są filtry oraz odsprzęganie zasilania. Filtracja napięcia lub – prościej mówiąc – „wygładzanie” napięcia zasilania jest możliwe dzięki pojemności kondensatora. Naładowany kondensator, włączony równolegle do napięcia zasilania układu lub jego części, jest w stanie szybko oddać potrzebną ilość energii, jeżeli w danym momencie rośnie pobór prądu zasilania danego obwodu. Małe, ceramiczne kondensatory lepiej radzą sobie z małymi, ale bardzo szybkimi zmianami, zaś duże kondensatory elektrolityczne nie są w stanie „zobaczyć” niewielkich, szybkich zmian, ale za to znacznie łatwiej radzą sobie z chwilowym podtrzymaniem zasilania podczas spadku jego wartości.
Dlatego w obwodach zasilania stosuje się równoległe połączenie obu tych rodzajów kondensatorów. Odsprzęganie w to ogólne określenie metod „separowania” poszczególnych bloków urządzenia w taki sposób, aby zakłócenia generowane przez jeden obwód nie przenosiły się na drugi poprzez szyny zasilania. Podstawową metodą odsprzęgania jest montowanie kondensatorów ceramicznych w pobliżu końcówek zasilania układów scalonych.
Jak dobrać kondensator do układu zasilania?
Najczęściej stosowane w praktyce są kondensatory ceramiczne o wartości rzędu 47..100 nF (odsprzęganie oraz filtracja wysokich częstotliwości) oraz elektrolityczne o pojemności, zależnej od pobieranego prądu. Przykładowo, dla większości mikrokontrolerów wystarczające są lokalne kondensatory elektrolityczne rzędu 10uF, a obwody zasilania dużych wzmacniaczy audio korzystają z całych, potężnych baterii kondensatorów o pojemnościach rzędu wielu tysięcy mikrofaradów.
Kondensator – Do czego służy? – Element filtru sygnałowego
Jeżeli masz pod ręką rezystor i kondensator, możesz bez problemu zbudować z pomocą tych dwóch elementów całkiem przyzwoite, choć proste filtry, pozwalające na kształtowanie charakterystyk częstotliwościowych sygnałów. Co ciekawe i ważne, sposób działania filtru zależy od wzajemnego połączenia obu elementów, zaś parametry elektryczne – od oporności rezystora i pojemności kondensatora. Filtr górnoprzepustowy przepuszcza bez zmian sygnały o częstotliwościach (w przybliżeniu) powyżej określonej częstotliwości granicznej, którą można wyliczyć ze wzoru:
f [Hz] = 1 / (2 pi R[Ω] C[F])
Z kolei filtr dolnoprzepustowy będzie „odcinał” (czyli osłabiał) sygnały o wysokich częstotliwościach, zaś napięcie stałe i częstotliwości poniżej granicznej (de facto określonej takim samym wzorem, jak dla filtru górnoprzepustowego) pozostaną bez zmian.
Dzięki możliwości praktycznie dowolnego kształtowania charakterystyk filtrów RC, układy te są niezwykle rozpowszechnione praktycznie w całej elektronice.
Obwody LC – cewki i kondensatory
Kondensatory wchodzą w skład obwodów LC – połączenie cewki i kondensatora ma bowiem szczególnie ciekawe właściwości. Parametry takiego obwodu (zarówno szeregowego, jak i równoległego) także – podobnie, jak w przypadku obwodu RC – zmieniają się w zależności od częstotliwości sygnału, jednak w diametralnie inny sposób. Przykładowo, obwód równoległy znacząco zwiększa swoją impedancję dla sygnałów o tzw. częstotliwości rezonansowej i zmniejsza ją dla innych zakresów pasma. Obwody LC były niegdyś bardzo chętnie stosowane w wielu urządzeniach, szczególnie układach radiowych. Dzisiaj, z uwagi na spory stopień integracji układów nadawczo-odbiorczych, takie układy są stosowane w znacznie mniejszej ilości, choć nadal stanowią niezwykle istotną część obwodów w.cz.
Kondensator
Cewka Ruhmkorffa
Kondensatory, jakie są ich główne cechy i funkcje:
: Wyślij Wiadomość.
Przetłumacz ten tekst na 91 języków
: Podobne ogłoszenia.
Elastomery i ich zastosowanie.
Elastomery i ich zastosowanie. Elastomery poliuretanowe należą do grupy tworzyw sztucznych, które powstają na skutek polimeryzacji, a w ich głównych łańcuchach występują ugrupowania uretanowe. Określane w skrócie jako PUR lub PU mają wiele cennych…
T-shirt męski koszulka klasic
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Opis. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : DETALE HANDLOWE: : Kraj: ( Polska ) : Zasięg…
Moc rytuałów - wytyczne czy ryzyko? Bolesny rytuał
Moc rytuałów - wytyczne czy ryzyko? Bolesny rytuał We wszystkich kulturach są rytuały. Dzięki rytuałom społeczeństwa mogą być konsolidowane, ale także sterowane i instrumentalizowane. Badacze rozszyfrowują pochodzenie rytuałów i znajdują wskazówki…
Panel podłogowy: dąb romański
: Nazwa: Panel podłogowy: : Model nr.: : Typ: Deska dwuwarstwowa : Czas dostawy: 96 h : Pakowanie: pakiet do 30 kg lub paleta do 200 kg : Waga: : Materiał: Drewno : Pochodzenie: Polska . Europa : Dostępność: detalicznie. natomiast hurt tylko po umówieniu…
DAMIAN WIKLINA. Producent. Wyroby wiklinowe.
Poza produktami, których zdjęcia można znaleźć na naszej stronie realizujemy również zamówienia indywidualne w ilościach hurtowych. Macie Państwo pomysł na produkt z drewna lub wikliny ale nie macie wykonawcy? Prosimy o kontakt. Każdy pomysł wart jest…
Jaskinie Ajanta.
Jaskinie Ajanta. Mały szczegół z jaskiń Ajanta, zdecydowanie największej i najbardziej spektakularnej kolekcji sztuki starożytnej Indii, która przetrwała z okresu klasycznego. Jaskinie były zbiorem buddyjskich klasztorów i świątyń, wykutych w głębokim…
Мед: суперпродукты, которые должны быть в вашем рационе после 40 лет жизни
Мед: суперпродукты, которые должны быть в вашем рационе после 40 лет жизни Когда мы достигаем определенного возраста, потребности нашего организма меняются. Те, кто внимательно следил за тем, чтобы их тела проходили подростковый возраст в 20 лет, затем…
سلامت روان: افسردگی ، اضطراب ، اختلال دو قطبی ، اختلال استرس پس از ضربه ، تمایلات به خودکشی ، هراس:
سلامت روان: افسردگی ، اضطراب ، اختلال دو قطبی ، اختلال استرس پس از ضربه ، تمایلات به خودکشی ، هراس: همه ، صرف نظر از سن ، نژاد ، جنسیت ، درآمد ، مذهب یا نژاد ، مستعد بیماری روانی هستند. به همین دلیل درک سلامت روان و گفتگو با شخصی که به آن اعتماد دارید…
Detale z tronu króla Tutenchamona.
Detale z tronu króla Tutenchamona. Tron ten jest przechowywany w Muzeum Egipskim w Kairze, @centerofegyptology
Panel podłogowy: dąb
: Nazwa: Panel podłogowy: : Model nr.: : Typ: Deska dwuwarstwowa : Czas dostawy: 96 h : Pakowanie: pakiet do 30 kg lub paleta do 200 kg : Waga: : Materiał: Drewno : Pochodzenie: Polska . Europa : Dostępność: detalicznie. natomiast hurt tylko po umówieniu…
L-metionina
L-metionina – korzystnie wpływa na procesy regeneracyjne tkanki łącznej. Nasz organizm potrzebuje mnóstwa składników mineralnych, bez których jego praca nie przebiega tak, jak powinna. Niektóre z nich dostarczamy wraz z pożywieniem, inne trzeba…
W Boliwijskiej Sierra monumentalny kompleks zawieszony między Niebem a Ziemią.
W Boliwijskiej Sierra monumentalny kompleks zawieszony między Niebem a Ziemią. Tutaj, w ponad dwustuletniej historii, aż do przybycia Inków, niektóre najważniejsze kultury prekolumbijskie następowały po sobie W języku keczua termin Samaipata oznacza…
LABSYSTEM. Firma. Materiały, naczynia, szkło laboratoryjne.
Firma Labsystem istnieje od 2003 roku, przez ten kilkunastoletni okres działalności wyposażyliśmy kompleksowo wiele placówek medycznych i naukowych na terenie całego kraju, dostarczamy sprzęt najwyższej jakości w tym urządzenia laboratoryjne, meble ,…
PEERCHAIN. Company. Chains, metal chains, roller chains, speciality chains.
Mission Statement Mission Statements…wow…it seems every company has one; some individuals have one as well. We sincerely spent a lot of time reflecting on this and honestly, we really embrace ours…so this is for you: PEER’s personal commitment is to…
ZAWORY. Firma. Zawory kulowe.
Firma TE-HA-BUD działa na rynku już od 1989 roku. Jako przedstawiciel takich firm jak AVM Automation (Euromatic), AVS Romer, GSR, Muller Coax i producent zaworów kulowych oraz innych urządzeń tego typu, staramy się udostępniać naszym Klientom tylko…
Odkrycie Anunnaki i plan ucieczki.
Odkrycie Anunnaki i plan ucieczki. Starożytna, nieznana supercywilizacja przetrwała 930 lat . Zaawansowana technologicznie, wysoko rozwinięta w obróbce komputerowej, inżynierii, lotnictwie, rzemiośle budowlanym z rozwiniętymi filozofiami. To było…
Smartwach Motorola Moto 360
Sprzedam Smartwach Motorola Moto 360:Przekątna wyświetlacza 1.56 " Waga zegarka 49 g Rozdzielczość wyświetlacza 320 x 290 System operacyjny Android Pojemność akumulatora 320 mAh Zainteresowanych zapraszam do kontaktu.
ZARZECKITRANSPORT. Firma. Transport ponadnormatywny, specjalny.
Już ponad 20 lat świadczymy usługi transportowe własnym sprzętem. Zaczynaliśmy w listopadzie 1988 roku z dwoma wywrotkami, obsługując rzemieślników oraz małe przedsiębiorstwa budowlane. W roku 1992 postawiliśmy krok naprzód, inwestując w pierwszy ciągnik…
GEESTESGESONDHEID: depressie, angs, bipolêre versteuring, post-traumatiese stresversteuring, selfmoordneigings, fobies:
GEESTESGESONDHEID: depressie, angs, bipolêre versteuring, post-traumatiese stresversteuring, selfmoordneigings, fobies: Almal, ongeag ouderdom, ras, geslag, inkomste, godsdiens of ras, is vatbaar vir geestesongesteldheid. Daarom is dit belangrik om u…
Koszula męska Niebieska
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Opis. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : DETALE HANDLOWE: : Kraj: ( Polska ) : Zasięg…
WSZYSTKO JEST ENERGIĄ.
WSZYSTKO JEST ENERGIĄ. 7 rzeczy, które pozytywnie lub negatywnie wpływają na częstotliwość drgań z punktu widzenia fizyki kwantowej. W fizyce kwantowej oznacza to, że wszystko jest energią. Jesteśmy istotami wibracyjnymi. Każda wibracja jest równoważna…
Аромотерапия үшін табиғи эфирлік және хош иісті майлар.
Аромотерапия үшін табиғи эфирлік және хош иісті майлар. Аромотерапия - бұл әртүрлі дәрі-дәрмектердің, хош иістердің қасиеттерін әр түрлі ауруларды жеңілдету үшін қолдануға негізделген табиғи медицина деп те атайды. Тыныштандыратын нервтерді және тіпті…
Кофейное дерево, выращивание кофе в горшке, когда сеять кофе:
Кофейное дерево, выращивание кофе в горшке, когда сеять кофе: Кофе - неприхотливое растение, но прекрасно переносит домашние условия. Он любит солнечные лучи и довольно влажную почву. Посмотрите, как ухаживать за какао-деревом в горшке. Может стоит…
mRNA-1273: Maganin Coronavirus yana shirye don gwajin asibiti:
mRNA-1273: Maganin Coronavirus yana shirye don gwajin asibiti: Maganin Coronavirus yana shirye don gwajin asibiti Kamfanin Kamfanin kere-kere na Moderna, daga Cambridge, Mass., Ya ba da sanarwar cewa allurar rigakafinsa, mRNA-1273, don kwayar cutar…
Akpụkpọ anụ nke Capillary: nlekọta ihu na ịchọ mma maka anụ ahụ capillary.
Akpụkpọ anụ nke Capillary: nlekọta ihu na ịchọ mma maka anụ ahụ capillary. Illakpụpu akpịrị na-emebi arịa ọbara, nke na-eme ka ha na-acha ọbara ọbara. Ihe ịchọ mma dị mma maka okpu, dị ka ude ihu ma ọ bụ ụfụfụ dị ọcha, nwere ihe ndị na-eme ka ahụ wee…
Czy czeka nas starcie z jaszczurami? Ostrzega nas pisarz, któremu zawdzięczamy słowo robot.
Opublikowana w 1936 r. „Inwazja Jaszczurów” była jeszcze jednym ostrzeżeniem i zwiastunem zbliżających się paskudnych czasów. Dziś jednak wcale nie traci na aktualności, a co gorsza – wręcz zyskuje. Każde pociągnięcie na szachownicy to stara historia,…