Nadmi
- Kraj:Polska
- : Język.:deutsch
- : Utworzony.: 06-10-15
- : Ostatnie Logowanie.: 31-01-26

: Opis.: Cewki i dławiki indukcyjne: Czym jest cewka? Najważniejszym zadaniem cewki jest filtrowanie napięcie. Jednocześnie cewka gromadzi energię pola magnetycznego. Przydatność cewki określa się za pomocą jednostki henr w skrócie H. Do czego służy cewka indukcyjna? Zastosowanie dławików indukcyjnych jest niezwykle szerokie. Wykorzystuje się je nie tylko w przemyśle elektrotechnicznym, ale również elektronicznym. Są montowane m.in. w układach napędowych, sprzęcie energoelektronicznym i w prostownikach. Do czego służy dławik? Zastosowanie dławika jest zabezpieczeniem przed nagłymi zmianami natężenia prądu. Ponadto dławiki są wykorzystywane do ograniczenia prądu (przemiennego, AC). W dużym skrócie, dławik filtruje zakłócenia natężenia prądu. Należy przy tym do grupy elementów pasywnych. Gdzie wykorzystywane są cewki? Cewki znajdują zastosowanie m.in. w wodzie układu elektrycznego, który jest zasilany bezpośrednio z sieci elektroenergetycznej. Ponadto dzięki zdolności do magazynowania energii, znajduje zastosowanie nie tylko w przetwornikach napięcia, a ale również w układach zasilających. Wszystkich dociekliwych zachęcamy do lektury artykułu o cewkach i dławikach indukcyjnych.
: Data Publikacji.: 05-01-26
: Opis.: Obwody LC – cewki i kondensatory. Kondensatory wchodzą w skład obwodów LC – połączenie cewki i kondensatora ma bowiem szczególnie ciekawe właściwości. Parametry takiego obwodu (zarówno szeregowego, jak i równoległego) także – podobnie, jak w przypadku obwodu RC – zmieniają się w zależności od częstotliwości sygnału, jednak w diametralnie inny sposób. Przykładowo, obwód równoległy znacząco zwiększa swoją impedancję dla sygnałów o tzw. częstotliwości rezonansowej i zmniejsza ją dla innych zakresów pasma. Obwody LC były niegdyś bardzo chętnie stosowane w wielu urządzeniach, szczególnie układach radiowych. Dzisiaj, z uwagi na spory stopień integracji układów nadawczo-odbiorczych, takie układy są stosowane w znacznie mniejszej ilości, choć nadal stanowią niezwykle istotną część obwodów. Kondensatory – podsumowanie Nie sposób w krótkim artykule ująć nawet znacznej części najbardziej klasycznych zastosowań kondensatorów. Mając podstawowe informacje o rodzajach, sposobach łączenia i sposobie działania kondensatorów możesz jednak rozpocząć eksperymenty, które – jak w każdym przypadku – pozwolą Ci naocznie poznać działanie tych przydatnych elementów.
: Data Publikacji.: 05-01-26
: Opis.: Kondensator – Do czego służy? – Element filtru sygnałowego Jeżeli masz pod ręką rezystor i kondensator, możesz bez problemu zbudować z pomocą tych dwóch elementów całkiem przyzwoite, choć proste filtry, pozwalające na kształtowanie charakterystyk częstotliwościowych sygnałów. Co ciekawe i ważne, sposób działania filtru zależy od wzajemnego połączenia obu elementów, zaś parametry elektryczne – od oporności rezystora i pojemności kondensatora. Filtr górnoprzepustowy przepuszcza bez zmian sygnały o częstotliwościach (w przybliżeniu) powyżej określonej częstotliwości granicznej, którą można wyliczyć ze wzoru: f = 1 / (2 pi R C) Z kolei filtr dolnoprzepustowy będzie „odcinał” (czyli osłabiał) sygnały o wysokich częstotliwościach, zaś napięcie stałe i częstotliwości poniżej granicznej (de facto określonej takim samym wzorem, jak dla filtru górnoprzepustowego) pozostaną bez zmian. Dzięki możliwości praktycznie dowolnego kształtowania charakterystyk filtrów RC, układy te są niezwykle rozpowszechnione praktycznie w całej elektronice.
: Data Publikacji.: 05-01-26
: Opis.: CEWKA NIEIDEALNA: Dotychczas rozważaliśmy parametry cewki idealnej. Tymczasem w rzeczywistych warunkach drut nawojowy będzie miał pewną rezystancję oraz pojemność, co będzie miało wpływ na rzeczywiste parametry cewki, których jeszcze nie rozważaliśmy. Na rysunku pokazano zastępczy schemat stałoprądowy rzeczywistej cewki. Szeregowo ze zwojami włączono opornik reprezentujący rezystancję drutu nawojowego. Przy przepływie prądu przez cewkę będzie on powodował nie tylko spadek napięcia, ale również straty mocy w postaci ciepła, co może powodować grzanie się cewki i zmianę parametrów rdzenia. W konsekwencji maleje też sprawność energetyczna całego urządzenia. Zastępczy schemat ideowy cewki przy analizie stałoprądowej. Przy analizie zmiennoprądowej należy również uwzględnić pojemność pasożytniczą tworzoną przez odizolowane warstwy przewodnika i dlatego na schemacie zastępczym oprócz rezystora pojawia się też kondensator dołączony równolegle do zacisków cewki. Tworzy się w ten sposób obwód rezonansowy RLC, a sama cewka przed osiągnięciem częstotliwości rezonansowej ma charakter indukcyjny, a po jej osiągnieciu – pojemnościowy. Dlatego impedancja cewki rośnie do częstotliwości rezonansowej, by w rezonansie osiągnąć wartość maksymalną oraz maleje po jej przekroczeniu. Zmiana charakteru rzeczywistej cewki po osiągnięciu częstotliwości rezonansowej. Oznaczenia na schemacie zastępczym: L – indukcyjność, EPC – pojemność pasożytnicza, EPR – rezystancja równoległa symbolizująca straty mocy, ESR – rezystancja szeregowa symbolizująca rezystancję drutu nawojowego) Trzy rodzaje strat mocy w cewkach indukcyjnych W aplikacjach cewek rozpatruje się trzy dominujące rodzaje strat mocy. Pierwszym jest wspomniana wcześniej strata występująca na rezystancji szeregowej, to jest na rezystancji drutu nawojowego. Ta strata mocy powinna być brana pod szczególną uwagę, gdy prąd płynący przez cewkę ma duże natężenie. Najczęściej mamy z nią do czynienia w zasilaczach i obwodach zasilania. Ten rodzaj strat powoduje grzanie się cewki, a w konsekwencji całego urządzenia. Jest on też najczęstszą przyczyną uszkodzenia, ponieważ wysoka temperatura można spowodować uszkodzenie izolacji i zwarcie zwojów. Drugą rodzajem strat mocy są straty występujące w rdzeniu. Pojawiają się one na skutek nierównomierności wykonania rdzenia, występowania prądów wirowych oraz zmiany położenia domen magnetycznych. Te straty są dominujące, gdy prąd płynący przez cewkę ma małe natężenie. Można się z nimi spotkać w obwodach dużej częstotliwości, separatorach sygnałów cyfrowych i innych. Doprowadza on nie tyle do uszkodzenia cewki, ile do problemów ze stratami poziomu sygnału w czułych obwodach. Trzecim rodzajem strat mocy są te występujące na skutek strat strumienia magnetycznego, który może być rozpraszany przez mechaniczne elementy mocujące, szczeliny powietrzne w rdzeniu czy wreszcie niestaranność wykonania samej cewki. Cewka indukcyjna jest komponentem nieskomplikowanym i przez to być może nieco lekceważonym. Tymczasem budując obwód elektroniczny wyposażony w dławiki czy transformatory trzeba zwrócić szczególną uwagę na wybierane komponenty indukcyjne, w tym na ich częstotliwości rezonansowe oraz parametry materiału rdzenia. Inne rdzenie są stosowane przy częstotliwości prądu rzędu dziesiątek czy setek herców, a inne przy setkach megaherców i więcej. Niekiedy, przy sygnałach o wysokiej częstotliwości wystarczy odcinek przewodu z nanizanym koralikiem ferrytowym. Cewki indukcyjne mogą być wykonane w różny sposób. Typowo, nawija się od kilku do kilkuset zwojów drutu na rdzeniu. W niektórych zastosowaniach wykonuje się zwoje w postaci ścieżek na płytce drukowanej niekiedy zamykając je w kubku ferrytowym. Współcześnie większość cewek, a zwłaszcza dławików stosowanych w obwodach zasilania, wykonuje się z przeznaczeniem do montażu SMD. Przy tym nadal trwa wyścig technologiczny i stale są opracowywane coraz to nowsze materiały magnetyczne, zachowujące swoje właściwości pomimo wzrostu temperatury, mające mniejsze straty itd. Cewka przeznaczona do pracy przy małej częstotliwości zwykle ma rdzeń żelazny i dużą liczbę zwojów, przez co ma stosunkowo duży ciężar. Dlatego w wielu aplikacjach, zwłaszcza tych narażonych na wstrząsy i udary, ogromne znaczenie ma sposób montażu. Zwykle przylutowanie cewki nie wystarczy - jej rdzeń trzeba pewniej przymocować, za pomocą obejmy, uchwytów czy śrub. Wybierając cewkę lub transformator do urządzenia, warto to mieć to na uwadze. ZASTOSOWANIE CEWEK W ELEKTRONICE Cewki stosuje się do: blokowania przepływu prądu przemiennego w obwodzie, zwierania prądu (napięcia) stałego, pomiaru upływu czasu na podstawie zanikania przepływu prądu, budowania obwodów oscylacyjnych, budowania filtrów na określone częstotliwości, sprzęgania stopni wzmacniaczy, obniżania lub podwyższania napięcia. Niektóre zastosowania cewki są zbliżone do aplikacji kondensatora. Jak już wiemy, cewka zachowuje się jak kondensator po przekroczeniu częstotliwości rezonansowej. Nie oznacza to jednak, że te elementy można w układzie stosować zamiennie. Zachęcamy do zapoznania się z filmem poświęconym tematowi cewek indukcyjnych i ich zastosowaniu w elektronice:
: Data Publikacji.: 05-01-26
© Web Powered by Open Classifieds 2009 - 2026